pYEOS Documentation

Release 1

David Barroso

January 22, 2015

Contents

1 Tutorials

1

1.1 FIrst StePS . . o v o o e e e e e e e e e e e e e e e e e e 1

2 Classes 9
2.1 EOS . . e s 9

2.2 EOSConf e e e 10

CHAPTER 1

Tutorials

1.1 First Steps

1.1.1 Connecting to a device

First you have to connect to a device:

>>> from pyEOS import EOS
>>> device = EOS (hostname=’10.48.71.3", username='admin’, password=’'pabbwlrd’, use_ssl=False)
>>> device.open|()

1.1.2 Running show commands

Once you are connected you can execute any show command you want. All show commands are supported by default
and will return the same output as the eAPI without modifying anything. For example:

>>> 11dp = device.show_l1ldp_neighbors ()
>>> print 1ldp
{u’tablesDrops’: 0, u’_meta’: {u’execStartTime’: 1418311629.19, u’execDuration’: 0.0096}, u’tablesAg:

Let’s explain what you are seeing there. You got a dictionary with different keys, the interesting ones are _meta and
lldpNeighbors. The key _meta gives you some useful information to find out if your query is hogging the device and
the key lldpNeighbors is a list of dictionaries giving you information about your LLDP neighbors. We can easily walk
through them:

>>> for neighbor in 1lldp[’lldpNeighbors’]:
print "¢s is connected on port %s. Remote port is %s" $ (neighbor[’neighborDevice’], neighb«

lom-bjg6l-rl-1 is connected on port Managementl. Remote port is 6

As I explained before, any show command is supported out of the box (with all of its suboptions). Let’s try to check
the status of the interfaces with show interfaces description:

>>> interfaces = device.show_interfaces_description/()
>>> for interface, status in interfaces|[’interfaceDescriptions’].iteritems{():
print "2s is %s" % (interface, status[’interfaceStatus’])

Ethernet8 is down
Ethernet9 is down
Ethernet2 is down
Ethernet3 is down

pYEOS Documentation, Release 1

Ethernetl is down
Ethernet6 is down
Ethernet7 is down
Ethernet4 is down
Ethernet5 is down
Ethernet52/1 is down
Ethernet52/3 is down
Ethernet52/2 is down
Ethernet52/4 is down
Ethernet34 is down
Ethernet22 is down
Ethernet50/4 is down
Ethernet50/3 is down
Ethernet50/2 is down
Ethernet50/1 is down
Ethernet51/4 is down
Ethernet51/2 is down
Ethernet51/3 is down
Ethernet51/1 is down
Ethernet38 is down
Ethernet39 is down
Ethernetl1l8 is down
Ethernetl9 is down
Ethernet32 is down
Ethernetl5 is down
Ethernetl6 is down
Ethernet31 is down
Ethernet49/1 is down
Ethernet37 is down
Ethernet49/3 is down
Ethernet35 is down
Ethernetl0 is down
Ethernetl4 is down
Ethernet49/2 is down
Ethernet33 is down
Ethernet49/4 is down
Ethernet30 is down
Managementl is up
Ethernetl7 is down
Ethernet48 is down
Ethernetd47 is down
Ethernet36 is down
Ethernet45 is down
Ethernet44 is down
Ethernet43 is down
Ethernet42 is down
Ethernetd4l is down
Ethernet40 is down
Ethernet29 is down
Ethernet28 is down
Ethernetll is down
Ethernetl2 is down
Ethernet46 is down
Ethernet21 is down
Ethernet20 is down
Ethernet23 is down
Ethernetl3 is down
Ethernet25 is down

Chapter 1. Tutorials

pyEOS Documentation, Release 1

Ethernet24 is down
Ethernet27 is down
Ethernet26 is down

Now let’s try with the command show ip route:

>>> routes = device.show_ip_route()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pyEOS/eos.py", line 19, in wrapper
return self.run_commands (cmd, =**kwargs) [1]
File "pyEOS/eos.py", line 63, in run_commands
raise exceptions.CommandUnconverted(error)

pyEOS.exceptions.CommandUnconverted: CLI command 2 of 2 ’'show ip route’ failed: unconverted command

Something happened here. That command has not been converted to JSON yet so the command failed as the API will
always to fetch JSON by default. You can tell the API to detect this problem automatically for you and fix it:

>>> routes = device.show_ip_route (auto_format=True)
>>> print routes|[’output’]
Codes: C - connected, S - static, K - kernel,

O - OSPF, IA - OSPF inter area, El1 - OSPF external type 1,
E2 - OSPF external type 2, N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type2, B I - iBGP, B E - eBGP,

R - RIP, I - ISIS, A B - BGP Aggregate, A O - OSPF Summary,
NG - Nexthop Group Static Route

Gateway of last resort:
S 0.0.0.0/0 [1/0] via 10.48.68.1, Managementl

C 10.48.68.0/22 is directly connected, Managementl

Or you can also explictly ask for text output:

>>> 11dp = device.show_1lldp_neighbors (format='text’)
>>> print 1lldp[’output’]

Last table change time : 105 days, 1:02:36 ago

Number of table inserts : 1

Number of table deletes 0

Number of table drops : 0

Number of table age-outs 0

Port Neighbor Device ID Neighbor Port ID TTL
Mal lom-bjg6l-rl-1 6 120

1.1.3 Running arbitrary commands

You can also run a list of commands. They can be any command you want:

>>> cmds = ["ping 8.8.8.8", ’traceroute 8.8.8.8"]

>>> output = device.run_commands (cmds)

>>> print output([l] ['messages’]

[u"PING 8.8.8.8 (

>>> print output[l] ['messages’][0]

PING 8.8.8.8 (8.8.8.8) 72(100) bytes of data.

80 bytes from 8.8.8.8: icmp_reg=1l ttl=60 time=1.31 ms

80 bytes from 8.8 8: icmp_reg=2 ttl=60 time=1.08 ms
8 8:

.8.
80 bytes from 8.8.8. icmp_reg=3 ttl=60 time=0.783 ms

1.1. First Steps 3

8.8.8.8) 72(100) bytes of data.\n80 bytes from 8.8.8.8: icmp_reg=1 ttl=60 time=1.31

pYEOS Documentation, Release 1

80 bytes from
80 bytes from

8.8.8.8:
8.8.8.8:

icmp_reg=4 ttl=60 time=0.722 ms
icmp_reg=5 ttl=60 time=0.724 ms

--- 8.8.8.8 ping statistics —---
5 received, 0% packet loss, time 4ms
0.722/0.925/1.313/0.237 ms, ipg/ewma 1.

5 packets tra
rtt min/avg/m

nsmitted,
ax/mdev =

>>> print output[2] ['messages’][0]
8.8.8.8), 30 hops max, 60 byte packets
8.1) 0.377 ms 0.351 ms 0.334 ms

239.169.193) 1.206 ms 1.181 ms 1.167
5.45.14) 48.143 ms
4.239.241) 1.596 ms 64.233.175.10 (64.

traceroute to
1 10.48.68.
2 80.239.16
3 62.115.45
4 72.14.239
5 8.8.8.8 (

8.8.8.8 (

1 (10.48.6
9.193 (80.
.14 (62.11
.241 (72.1
8.8.8.8)

1.551 ms 1.538 ms

163/1.105 ms

ms

48.117 ms 48.042 ms

0.954 ms

233.175.10) 1.303 ms 72.14.239.239

On the previous example output[0] will contain the result of executing the command enable, ouzput[1] the result of
the ping command and finally output[2], the result of the traceroute. Note: If you don’t specify the command enable
as the first command on the list it is added automatically by this API.

Here is another example with only one command:

>>> output =

Directory of

-r—x
drwx
—rwx
—rwx
-rwx
drwx
drwx
drwx
—rwx
—rwx

1691504640 by

device.run_commands (['dir /all’])
>>> print output[l] ['messages’][0]

flash:/

358580934
4096
306459060
358580934
27

4096

4096

4096

2199

0

tes total

Aug 12
Feb 5
Feb 5

Aug 12

Aug 12

Aug 12

Dec 11
Feb 5

Dec 11
Aug 4

12:
02:
02:
12:

12

12:
13:
02:
13:
12:

31 .extensions

29 EOS-4.11.6.swi
15 EOS-4.14.1F.sw
:21 Dboot-config

25 debug

39 persist

36 schedule

39 startup-config
31 zerotouch-conf

(664113152 bytes free)

23 .boot-image.swi

i

ig

It can be any command supported on the CLI. You could even reload the device, install extensions or upgrade firmware:

>>> output =

{u’_meta’: {u’execStartTime’:

device.run_commands ([’ reload now’])
>>> print output[1l]

1418314151.77, u’execDuration’:

1.2613}}

Reloading the device did not give that much feedback but this is what I got on an SSH session I had open:

arista-7150s-

64-24#

Broadcast message from root@arista-7150s-64-2

(unknown)

at 16:09

The system is going down for reboot NOW!
Connection to 10.48.71.3 closed by remote host.
Connection to 10.48.71.3 closed.

1.1.4 Managing Configuration

You can easily get the configuration and print it:

Chapter 1. Tutorials

(7.

pyYEOS Documentation, Release 1

>>> device.load_running_config()
>>> print device.running_config.to_string()
transceiver gsfp default-mode 4x10G
queue-monitor length update-interval 5000000
hostname eapi-lab
spanning-tree mode mstp
aaa authorization exec default local
no aaa root
username admin privilege 15 role network-admin secret 5 $1$7uXjRZfX$SpOFGCCKivNwgIDYFIYbzeO
vrf definition mgmtVRF
rd 65000:65000
interface Ethernetl
interface Ethernet?2
description "whatever"
shutdown
no switchport
ip address 10.0.0.1/31
interface Ethernet3
description "whatever"

interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface

Ethernet4

Ethernetb5

Ethernet6

Ethernet?

Ethernet8

Ethernet?9

Ethernetl0
Ethernetll
Ethernetl?2
Ethernetl3
Ethernetl4
Ethernetl5
Ethernetl6
Ethernetl7
Ethernetl8
Ethernetl?9
Ethernet20
Ethernet21
Ethernet22
Ethernet23
Ethernet24
Ethernet25
Ethernet26
Ethernet27
Ethernet28
Ethernet29
Ethernet30
Ethernet3l
Ethernet32
Ethernet33
Ethernet34
Ethernet35
Ethernet36
Ethernet37
Ethernet38
Ethernet39
Ethernet40
Ethernet4dl
Ethernetd4?2

1.1. First Steps

pYEOS Documentation, Release 1

interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface
interface

Ethernet43
Ethernet44
Ethernet45
Ethernet4o6
Ethernet47
Ethernet48
Ethernet49/1
Ethernet49/2
Ethernet49/3
Ethernet49/4
Ethernet50/1
Ethernet50/2
Ethernet50/3
Ethernet50/4
Ethernet51/1
Ethernet51/2
Ethernet51/3
Ethernet51/4
Ethernet52/1
Ethernet52/2
Ethernet52/3
Ethernet52/4
Managementl

ip address 10.48.71.3/22
ip route 0.0.0.0/0 10.48.68.1
ip route vrf mgmtVRF 0.0.0.0/0 10.48.68.1
no ip routing
no ip routing vrf mgmtVRF
management api http-commands
no protocol https
protocol http
no shutdown
end

Or just check an interface configuration:

>>> print device.running_config[’interface Ethernet2’]
[u’"description "whatever"’, u’shutdown’, u’no switchport’, u’ip address 10.0.0.1/31"]

You can also read configuration from a file, compare the running config with the candidate config:

>>> device.load_candidate_config(’tests/config.txt’”)
>>> print device.compare_config/()
+ hostname NEWHOSTNAME
- hostname eapi-lab
interface Ethernetl
+ description "whatever"
interface Ethernet2
— shutdown

You can commit the configuration if you are happy:

>>> device.commit ()
[{u’_meta’: {u’execStartTime’: 1418660581.91,
>>> print device.compare_config()

u’execDuration’: 0.00144815444946}}, {u’'messages

>>>

And even rollback if you regret it:

6 Chapter 1. Tutorials

’ .

[u

€

pyEOS Documentation, Release 1

>>> device.rollback ()
[{u’_meta’: {u’execStartTime’: 1418660622.75, u’execDuration’: 0.00146913528442}}, {u’messages’: [u"
>>> print device.compare_config()
+ hostname NEWHOSTNAME
- hostname eapi-lab
interface Ethernetl
+ description "whatever"
interface Ethernet?2
— shutdown

1.1.5 Facts

The API also supports gathering some facts:

device.get_facts ()

>>> print facts[’serial_number’]
JPE14023449

>>> print facts[’system_mac_address’]
00:1c:73:42:86:b7

>>> print facts[’uptime’]
1418646951.73
>>> print facts[’model_name’]
DCS-7150S-64-CL-F
>>> print facts[’version’]
4.14.5F

Facts also include interface details:

>>> print facts[’interfaces’].keys()
[u’Ethernet8’, u’Ethernet9’, u’Ethernet2’,
>>> print facts([’interfaces’][’Ethernet2’]
{u’interfaceStatistics’: {u’inBitsRate’: 0.0, u’updateInterval’: 300.0, u’outBitsRate’: 0.0, u’outPkt
>>> print facts([’interfaces’][’Ethernet2’][’description’]

"whatever"

>>> print facts([’interfaces’][’Ethernet2’] [’ forwardingModel’]

routed

>>> print facts[’interfaces’][’Ethernet2’][’interfaceAddress’]1[0][’'primaryIp’][’address’]

10.0.0.1

>>> print facts([’interfaces’][’Ethernet2’][’interfaceAddress’][0][’primaryIp’] [’ masklLen’]

31

u’Ethernet3’, u’Ethernetl’, u’Ethernet6’, u’Ethernet7’, u

1.1. First Steps 7

pYEOS Documentation, Release 1

8 Chapter 1. Tutorials

CHAPTER 2

Classes

2.1 EOS

class pyEOS . eos . EOS (hostname, username, password, use_ssl=True)
Represents a device running EOS.

The object will contain the following interesting attributes:
erunning_config - The configuration retrieved from the device using the method load_running_config
ecandidate_config - The configuration we desire for the device. Can be populated using the method
load_candidate_config
Parameters
* hostname — IP or FQDN of the device you want to connect to
* username — Username
* password — Password
* use_ssl — If set you True we will connect to the e API using https, otherwise http will be used
close ()

Dummy, method. Today it does not do anything but it would be interesting to use it to fake closing a
connection.

compare_config ()

Returns A string showing the difference between the running_config and the candidate_config.
The running_config is loaded automatically just before doing the comparison so there is no
neeed for you to do it.

get_config (format="json’)
Parameters format — Either ‘json’ or ‘text’
Returns The running configuration of the device.

load_candidate_config (filename=None, config=None)
Populates the attribute candidate_config with the desired configuration. You can populate it from a file
or from a string. If you send both a filename and a string containing the configuration, the file takes
precedence.

Parameters

« filename — Path to the file containing the desired configuration. By default is None.

pYEOS Documentation, Release 1

* config — String containing the desired configuration.

load_running_ config()
Populates the attribute running_config with the running configuration of the device.

open ()
Opens the connection with the device.

replace_config (config=None)
Applies the configuration changes on the device. You can either commit the changes on the candi-
date_config attribute or you can send the desired configuration as a string. Note that the current con-
figuration of the device is replaced with the new configuration.

Parameters config — String containing the desired configuration. If set to None the candi-
date_config will be used

rollback ()
If used after a commit, the configuration will be reverted to the previous state.

run_commands (commands, version=1, auto_format="False, format="json’, timestamps=True)
This method will run as many commands as you want. The ‘enable’ command will be prepended automat-
ically so you don’t have to worry about that.

Parameters
e commands — List of commands you want to run
* version — Version of the eAPI you want to connect to. By default is 1.

« auto_format — If set to True API calls not supporting returning JSSON messages will be
converted automatically to text. By default is False.

 format — Format you want to get; ‘json’ or ‘text’. By default is json. This will trigger a
CommandUnconverted exception if set to ‘json’ and auto_format is set to False. It will
return text if set to ‘json’ but auto_format is set to True.

* timestamps — This will return some useful information like when was the command exe-
cuted and how long it took.

2.2 EOSConf

class pyEOS.config.EOSCon€£ (name)

You will probably not have to bother that much about this module yourself as it is usually easier to parse the
configuration from a file and then use the “load_config” methods on the EOS class to get this object populated.
However, if you understand how the eAPI handles the configuration in JSON mode you should be able to
manipulate it in the same way.

Parameters name — Name of the configuration

compare_config (other)
This method will compare the self object with the other object. The other object will be the target of the
comparison.

Parameters other — Configuration object you want to do the comparison with.
Returns A string representation of the changes between the self object and other.

load_config (filename=None, config=None)
Reads the configuration from a file or from a string and loads the object. If you send both a filename and
a string containing the configuration, the file takes precedence.

10

Chapter 2. Classes

pyEOS Documentation, Release 1

Parameters
* filename — Path to the file containing the desired configuration. By default is None.
* config — String containing the desired configuration.
to_string()

Returns A string representation of the configuration.

2.2, EOSConf 11

pYEOS Documentation, Release 1

12 Chapter 2. Classes

Index

C

close() (pyEOS.eos.EOS method), 9
compare_config() (pyEOS.config. EOSConf method), 10
compare_config() (pyEOS.eo0s.EOS method), 9

E

EOS (class in pyEOS.eos), 9
EOSConf (class in pyEOS.config), 10

G

get_config() (pyEOS.eos.EOS method), 9

L

load_candidate_config() (pyEOS.e0s.EOS method), 9
load_config() (pyEOS.config. EOSConf method), 10
load_running_config() (pyEOS.eo0s.EOS method), 10

O

open() (pyEOS.e0s.EOS method), 10

R

replace_config() (pyEOS.eo0s.EOS method), 10
rollback() (pyEOS.eo0s.EOS method), 10
run_commands() (pyEOS.eos.EOS method), 10

T

to_string() (pyEOS.config. EOSConf method), 11

13

	Tutorials
	First Steps

	Classes
	EOS
	EOSConf

